So far as the laws of mathematics refer to reality, they are not certain. And so far as the are certain, they do not refer to reality.

Albert Einstein

- + Нечёткая логика
- + Нейровычисления
- + Генетические вычисления
- + Вероятностные вычисления

- + Рассуждения на базе свидетельств
- + Сети доверия
- + Хаотические системы
- Разделы теории машинного обучения

- + Нечёткая логика обеспечивает:
 - работу с неточностью
 - гранулирование информации
 - приближённые рассуждения
 - вычисления со словами
- + Нейровычисления
- + Генетические вычисления
- + Вероятностные вычисления

- + Нечёткая логика
- + Нейровычисления способность к:
 - •обучению,
 - адаптации,
 - распознаванию.
- + Генетические вычисления
- + Вероятностные вычисления

- + Нечёткая логика
- + Нейровычисления
- + Генетические вычисления:
 - систематизация случайного поиска
 - достижение оптимальных характеристик
- + Вероятностные вычисления

- + Нечёткая логика
- + Нейровычисления
- + Генетические вычисления
- + Вероятностные вычисления:
 - управление неопределённостью,
 - проведение рассуждений, исходящих из свидетельств

- + Нечёткая логика
- + Нейровычисления
- + Генетические вычисления
- + Вероятностные вычисления

Гибридные вычисления

Гранулирование информации

- Человеческие понятия возникают в результате группировки точек или объектов, объединяемых по сходству.
- Нечёткость сходства приводит к тому, что эти группы являются нечёткими.
- В естественном языке слова играют роль меток гранул (для сжатия данных).
- В нечёткой логике гранулирование информации лежит в основе понятий лингвистической переменной и нечётких правил вида «если ... то ...» (if...else...).

Предположим, что ящик содержит десять шаров разного размера, из которых *несколько больших*, и *немного малых*.

Какова вероятность того, что случайно вытянутый шар не является *ни большим, ни малым*?

- Объектами вычислений являются слова, выступающие в роли меток гранул.
- Исходными данными является набор предложений на естественном языке.
- Желаемые заключения также выражаются в терминах естественного языка

«Маша молодая, а Саша на несколько лет старше, чем Маша» Саша is (молодая+несколько) лет

«Большинство студентов – молодые, и большинство молодых студентов холосты» (большинство² студентов холосты)

- <u>Объектами</u> вычислений являются <u>слова</u>, выступающие в роли меток гранул
- <u>Исходными данными является набор</u> предложений на естественном языке
- Желаемые заключения также выражаются в терминах естественного языка

«Маша молодая, а Саша на несколько лет старше, чем Маша» Саша іs (молодая+несколько) лет

«Большинство студентов – молодые, и большинство молодых студентов холосты» (большинство² студентов холосты)

• Слова играют роль *нечётких ограничений*, всё предложение интерпретируется как нечёткое ограничение на переменную

«Маша молода»:

Маша is молода = Возраст(Маши) is молодой

= -- операция разъяснения

Возраст(Маши) – ограничиваемая переменная

молодой – нечёткое ограничение

Если p – предложение естественного языка, то разъяснение p называют *канонической* формой.

В общем виде каноническая форма представляется в виде

X isr R

- X лингвистически ограничиваемая переменная
- R ограничивающее нечёткое отношение
- r дискретная переменная, определяющая роль R по отношению к X (например: является, часто, обычно,...)

Этапы вычислений со словами:

- 1. Разъяснение (предложения в канонической форме).
- 2. Распространение ограничений (применение правил вывода).
- 3. Ретрансляция (выведенных ограничений в предложения ЕЯ).

Нечёткие отношения

Нечёткие отношения

Пусть (Γ , $C(\Gamma)$, π) – возможностное пространство. Пусть X, Y – множества.

Возможностное (нечёткое) бинарное отношение -- отображение R: Г→X×Y (нечёткое подмножество на плоскости).

Функцией принадлежности отношения R называют функцию, определённую следующим образом:

$$\mu_R(x, y) = \pi \{ \gamma \in \Gamma \mid R(\gamma) = (x, y) \}, (x, y) \in X \times Y$$

Пересечение нечётких отношений:

$$\mu_{R \cap S}(x, y) = \mu_R(x, y) \circ^T \mu_S(x, y)$$

T-норма минимум ($T(a,b)=min\{a,b\}$):

$$\mu_{R \cap S}(x, y) = \min(\mu_R(x, y), \mu_S(x, y))$$

T-норма произведение (T(a,b)=a*b):

$$\mu_{R \cap S}(x, y) = \mu_R(x, y) \cdot \mu_S(x, y)$$

Пересечение нечётких отношений:

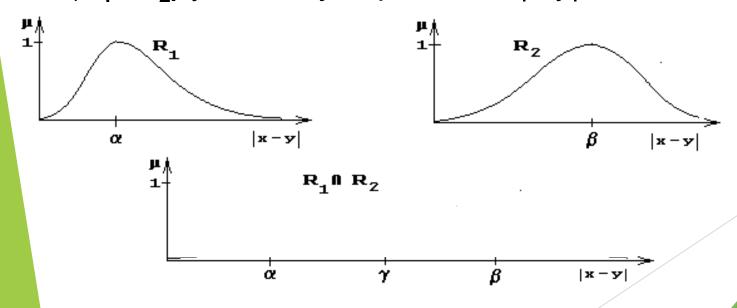
Пример

t-норма: минимум

 $x\mathbf{R}_1 y$ – «модуль разности |x-y| близок к α »,

 xR_2y – «модуль разности |x-y| близок к β »,

 $x(\mathbf{R_1} \cap \mathbf{R_2})$ у — «модуль разности |x-у| близок к α и β ».



Объединение (суммирование) нечётких отношений:

$$\mu_{R \cup S}(x, y) = \mu_R(x, y) \circ^S \mu_S(x, y)$$

S-норма максимум ($S(a,b)=max\{a,b\}$):

$$\mu_{R \cup S}(x, y) = \max(\mu_R(x, y), \mu_S(x, y))$$

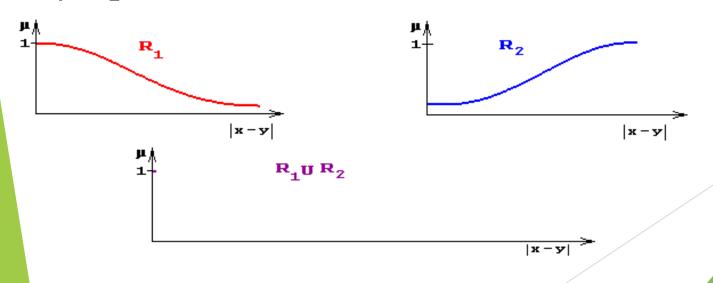
Объединение (суммирование) нечётких отношений:

Пример

xR₁y - «действительные числа x и y очень близкие»,

 xR_2y - «числа x и y очень различны»,

 $x(R_1 \cup R_2)$ у - "числа x и y очень близкие или очень различные".

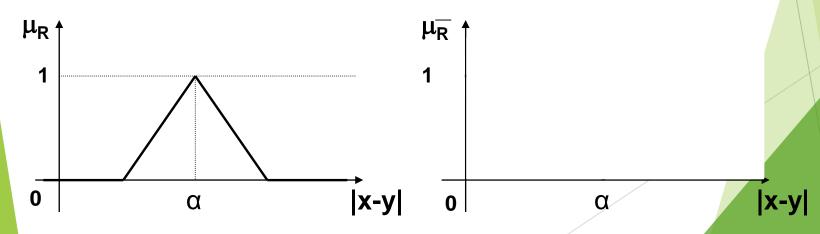


Дополнение нечёткого отношения:

$$\mu_{R}(x, y) = 1 - \mu_{R}(x, y)$$

Пример

 $x\mathbf{R}y$ – «модуль разности |x-y| близок к α », $x\mathbf{R}y$ – «модуль разности |x-y| не близок к α ».



Комбинация нечётких отношени

Пусть X,Y,Z – множества, R – нечёткое отношение на X×Y, S - нечёткое отношение на Y×Z.

Комбинацией (типа sup-T) нечётких отношений R и S называют нечёткое отношение R°S на X×Z с функцией принадлежности

$$\mu_{R \circ S}(x, z) = \sup_{y \in Y} \{ [\mu_R(x, y) \circ^T \mu_S(y, z)] \}$$

Комбинация нечётких отношени

T-норма минимум ($T(a,b)=min\{a,b\}$):

$$\mu_{R \circ S}(x, z) = \sup_{y \in Y} \{ \min \{ \mu_R(x, y), \mu_S(y, z) \} \}$$

Если множество Ү конечно, то:

$$\mu_{R \circ S}(x, z) = \max_{y \in Y} \{ \min \{ \mu_R(x, y), \mu_S(y, z) \} \}$$

T-норма произведение (T(a,b)=a*b):

$$\mu_{R \circ S}(x, z) = \sup_{y \in Y} \{\mu_R(x, y) \cdot \mu_S(y, z)\}$$

Свойства нечётких отношений

$$R \circ I = I \circ R = R$$

$$R \circ 0 = 0 \circ R = 0$$

$$(R \circ S) \circ T = R \circ (S \circ T)$$

$$R^{m} \circ R^{n} = R^{m+n}$$

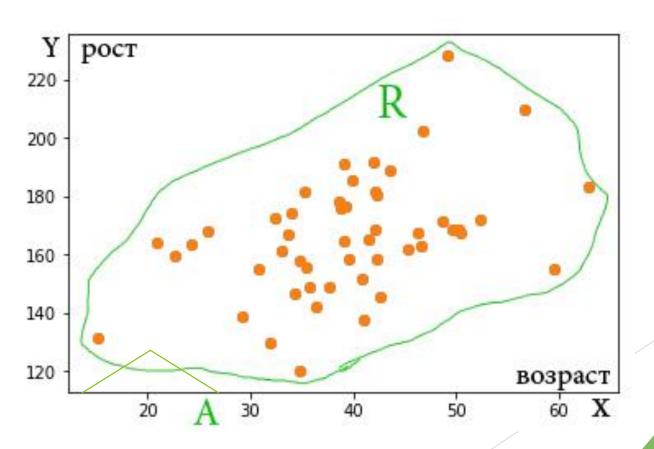
$$(R^{m})^{n} = R^{mn}$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

$$R \circ (S \cap T) = (R \circ S) \cap (R \circ T)$$

$$S \subset T \Rightarrow R \circ S \subset R \circ T$$

Пусть X,Y – множества, R – нечёткое отношение на X×Y, A – нечёткое множество на X.

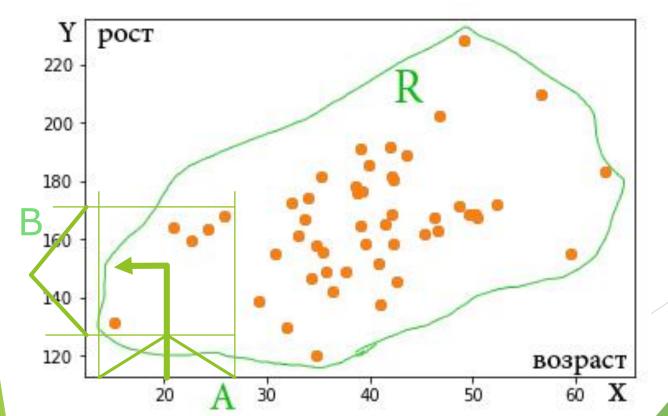


Пусть X,Y – множества, R – нечёткое отношение на X×Y, A – нечёткое множество на X.

Образом В нечёткого множества А в Y при отношении R является нечёткое множество, являющееся комбинацией A°R с функцией принадлежности вида:

$$\mu_{B}(y) = \mu_{R}(A, y) = \pi(ARy) = \sup_{x \in X} \{ [\mu_{A}(x) \circ^{T} \mu_{R}(x, y)] \}$$

Образом В нечёткого множества А в У при отношении R является нечёткое множество, являющееся комбинацией A°R..



T-норма минимум ($T(a,b)=min\{a,b\}$):

$$\mu_B(y) = \sup_{x \in X} \{ \min \{ \mu_A(x), \mu_R(x, y) \} \}$$

Если множество X конечно, то:

$$\mu_B(y) = \max_{x \in X} \{ \min \{ \mu_A(x), \mu_R(x, y) \} \}$$

T-норма произведение (T(a,b)=a*b):

$$\mu_B(y) = \sup_{x \in X} \{ \mu_A(x) \cdot \mu_R(x, y) \}$$

Если множество X конечно, то:

$$\mu_B(y) = \max_{x \in X} \{ \mu_A(x) \cdot \mu_R(x, y) \}$$

Нечёткое отношение между элементом и нечётким множеством

Пусть X,Y – множества, R – нечёткое отношение на $X\times Y$, x_0 - элемент из X, B – нечёткое множество на Y.

Тогда степень возможности, с которой x_0 связан с В нечётким отношением R равна:

$$\mu_{R}(x_{0}, B) = \pi(x_{0}RB) =$$

$$= \sup_{v \in Y} \{ [\mu_{R}(x_{0}, y) \circ^{T} \mu_{B}(y)] \}$$

Нечёткое отношение между элементом и нечётким множеством

Т-норма минимум (T(a,b)=min{a,b}):
$$\mu_R(x_0,B) = \sup\{\min\{\mu_R(x_0,y),\mu_B(y)\}\}$$

Если множество Y конечно, то:

$$\mu_{R}(x_{0}, B) = \max_{y \in Y} \{ \min \{ \mu_{R}(x_{0}, y), \mu_{B}(y) \} \}$$

T-норма произведение (T(a,b)=a*b):

$$\mu_R(x_0, B) = \sup_{y \in Y} \{\mu_R(x_0, y) \cdot \mu_B(y)\}$$

Если множество Y конечно, то:

$$\mu_{R}(x_{0}, B) = \max_{y \in Y} \{\mu_{R}(x_{0}, y) \cdot \mu_{B}(y)\}$$

Пусть X,Y – множества, R – нечёткое отношение на X×Y, A – нечёткое множество на X,B – нечёткое множество на Y.

Степень возможности того, что A и B связаны отношением R, определяется следующим образом:

$$\mu_{R}(A,B) = \pi(ARB) =$$

$$= \sup_{\substack{x \in X \\ y \in Y}} [\mu_{R}(x,y) \circ^{T} \mu_{A}(x) \circ^{T} \mu_{B}(y)] \}$$

T-норма минимум ($T(a,b)=min\{a,b\}$):

$$\mu_{R}(A, B) = \sup_{\substack{x \in X \\ y \in Y}} \min \{ \mu_{R}(x, y), \mu_{A}(x), \mu_{B}(x) \} \}$$

T-норма произведение (T(a,b)=a*b):

$$\mu_{R}(A,B) = \sup_{\substack{x \in X \\ y \in Y}} \{\mu_{R}(x,y) \cdot \mu_{A}(x) \cdot \mu_{B}(x)\}$$

Пример:

$$\mu_{R}(x, y) = \begin{cases} e^{x-y}, & x - y \le 0 \\ e^{y-x}, & x - y > 0 \end{cases}$$

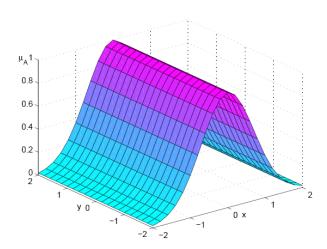
$$\mu_A(x) = e^{-x^2}$$

$$\mu_R(A,B) = ?$$

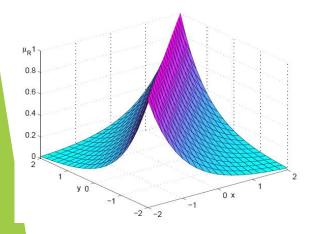
$$\mu_B(y) = e^{-(y-1)^2}$$

Пример:

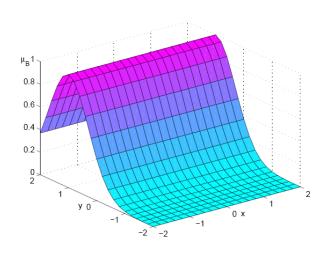
$$\mu_A(x) = e^{-x^2}$$



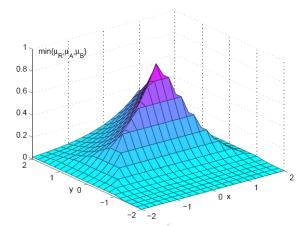
$$\mu_R(x,y) = e^{-|x-y|}$$



$$\mu_B(y) = e^{-(y-1)^2}$$



 $\min(\mu_R(x, y), \mu_A(y), \mu_B(y))$



Задача 1

Пусть имеются следующие нечёткие отношения:

- $X \approx Y$: $\mu_{X \approx Y} = tr_{(x-y)}(0,2,2)$,
- $X \ll Y : \mu_{X \ll Y} = \max\{0, \min\{x y, 1\}\},\$
- $X \gg Y: \mu_{X \gg Y} = \max\{0, \min\{y x 1, 1\}\}.$

Вычислите графически функцию принадлежности отношений

$$R = (X \approx Y)$$
и $(\overline{X} \ll Y)$.
 $Q = (X \approx Y)$ или $(\overline{X} > >> Y)$

Здесь и далее - t-норма min, s-норма max.

Задача 2

Пусть $X = Z = \{1, 2, 3\}, Y = \{a, b\}$ и заданы два нечётких отношения:

$R_1(X,Y)$	1	2	3
a	0.4	0.9	0.2
b	0.3	0.5	0.7

$R_2(Y,Z)$	a	b
1	0.3	0.7
2	0.5	0.8
3	0.9	0.1

Найдите функцию принадлежности нечёткого отношения $R = R_1 \circ R_2$

t-норма: произведение.

Задача 3

Дано:

 R_1 , R_2 - нечёткие отношения на $X \times Y$,

A - нечёткое подмножество X.

$$R_1$$
: $\mu_{R_1}(x, y) = tp_{x-y}(-2,0,1,1)$

$$R_2$$
: $\mu_{R_2}(x,y) = tp_{x-y}(0,2,1,1)$

A:
$$\mu_A(x) = tr(5,1,1)$$

Построить:

Функцию принадлежности образа B в Y нечёткого множества A при отношении $R = R_1 \cap R_2$ и t-норме min.